# ipdia

## **The 3D Silicon Leader**

## Silicon integrated capacitance for power conversion applications



Ludovic Fourneaud, Mohamed Mehdi Jatlaoui, Frederic Voiron

2014.10.07

## Outline

- Introduction
- New architecture of capacitive elements (MOSAIC)
  - 3 levels structure
  - Scalable capacitor with Low ESL /ESR (tunable)
- Development of physical model
  - Predicting the electrical behavior
- Electrical characteristics in the RF domain (300Khz 1Ghz)
  - Benefit in term of component parasitics (ESR /ESL) compared to prior art
  - Simulation Vs Measurement
- Example of application: *PowerSwipe Project* 
  - Typical application schemes in the field of the analogic high frequency power conversion
  - Need for better reliability and low profile SiP (ultra-thin capacitors down to 80µm)
- Conclusion and future outlook





## Who are we?



## Who are we?

- Independent European High Tech Company
- Dedicated to the manufacture of cutting edge Integrated Passive Devices
- Operate own 10 000 m<sup>2</sup> (110 000 ft<sup>2</sup>) Silicon wafer facility
- 20 M\$ incomes, 105 people
- 25% of financial resources allocated to R&D
- Technology adopted by 3 of the top 5 leaders in medical electronics as well as by key players in the semiconductor area and HI-Rel industry



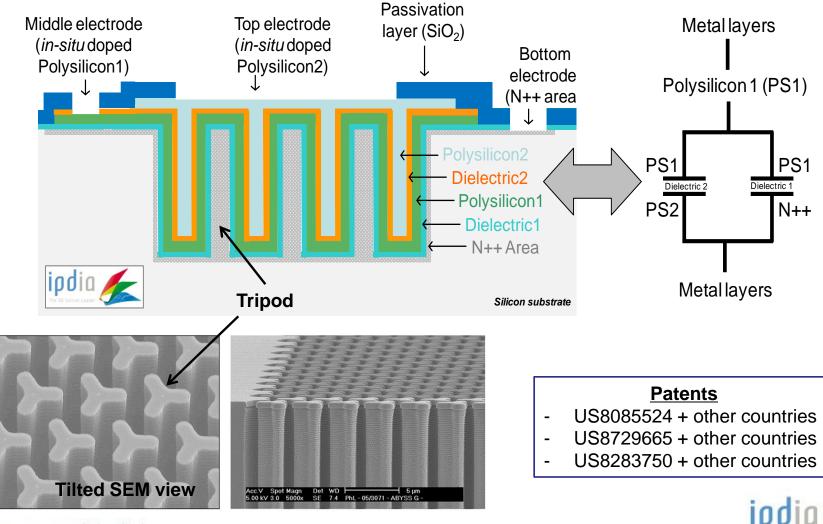




## **IPDiA terminology**

- PICS (Passive Integrated Connective Substrate) technology

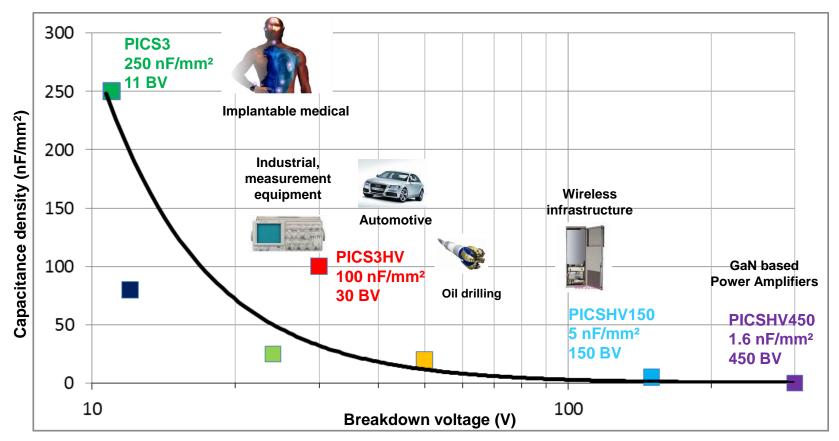
- 3D capacitors (Deep trench Capacitors)
- MIM Capacitors
- Inductors
- Polysilicon Resistors
- TSVs
- Diodes




'Functionalized' PICS interposer



## **3D structure**


## 2 parallelized capacitors in a MIMIM architecture to increase the capacitance value



Company confidential

## **Diversity of current IPDiA trench process technologies**

Capacitance density (nF/mm<sup>2</sup>) vs Breakdown voltage (V) min

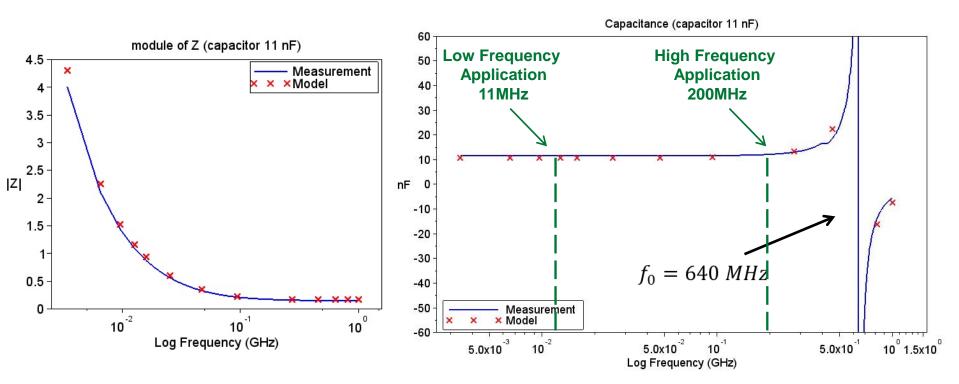




## **Capacitors Performances Summary**

- Breakdown voltage from 10V to 100V
- Low leakage current <1nA/mm<sup>2</sup> @ ambiant / Vnom
- Excellent temperature and voltage linearity
  - < 100 ppm/° K & < 100 ppm/V
  - Silicon capacitors and arrays are insensitive to operating temperatures between – 65° C to 250° C
- Excellent matching < 2%</p>
- High reliability
  - > 10 yrs @ operating voltage @ 100° C
  - FIT (Failure in Time) below 1 @ 225° C
  - Mechanical shock tests pass easily as well as thermal cycling tests (up to 3000 cycles in TMCL)
- Low Profile (ultra-thin capacitors down to 80µm)
- Low ESR/ESL






### Electrical characteristic in the RF domain



## **Measurements and model comparison**

### • 11 nF mosaic capacitor (22 tripods by cell), 10x10 cells, C tripod = 5pF



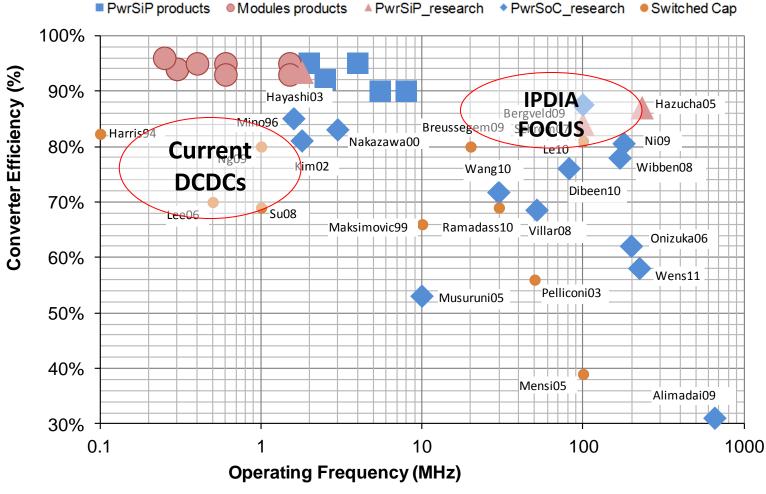
- Good matching between model and measurement
- Stable capacitor value up to ~300MHz
- Very high resonance frequency (640 MHz)



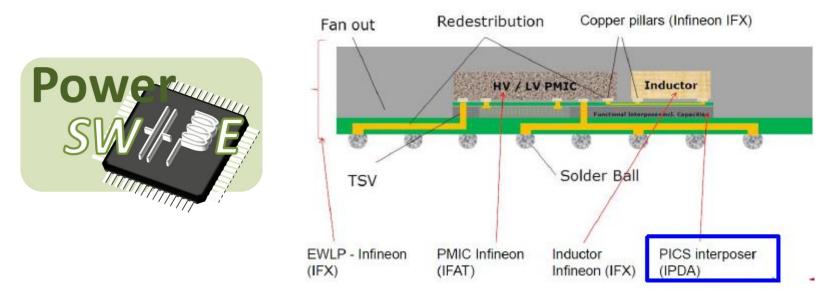
## **Measurements and model comparison**

|        | С (   | C (nF) R (mΩ) |       | L (pH)  |       | f <sub>0</sub> (MHz) |       |         |
|--------|-------|---------------|-------|---------|-------|----------------------|-------|---------|
|        | model | measure       | model | measure | model | measure              | model | measure |
| 11 nF  | 11.4  | 11.6          | 164   | 156     | 5.4   | 5.3                  | 640   | 643     |
| 16 nF  | 16.3  | 16.7          | 113   | 117     | 6.1   | 5.5                  | 505   | 525     |
| 33 nF  | 33.1  | 33.5          | 56    | 71      | 5.9   | 6.7                  | 360   | 335     |
| 222 nF | 223.2 | 224           | 8     | 28      | 4.2   | 4.1                  | 165   | 167     |
| 470 nF | 473   | 468           | 4     | 24      | 2.9   | 2.2                  | 136   | 157     |
| 404 nF | 390   | 392           | 4     | 40      | 4.91  | 1.53                 | 115   | 205     |
| 406 nF | 390   | 391           | 3     | 35      | 5.3   | 3.31                 | 110   | 140     |






## Example of application


### Power Swipe Project



#### **Trend towards higher frequencies**

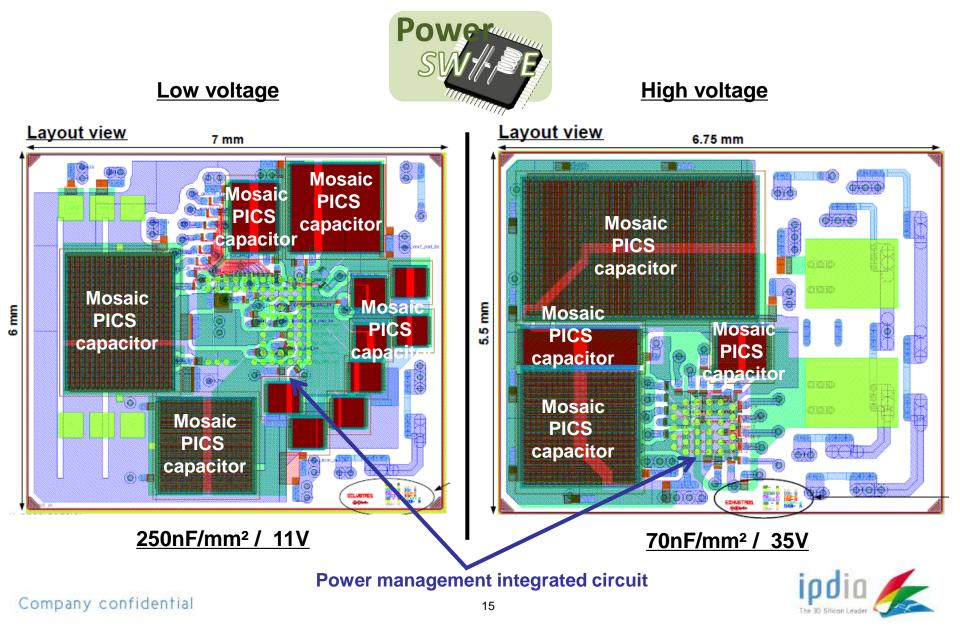






 IPDiA Trench capacitor technologies allow potential solution for LC interposer as part of PwrSiP platform

#### Low Frequency


L = 250nH, C = 400nF, F=11Mhz, P=1W. Cap density: 250nF/mm<sup>2</sup> Low voltage 70nF/mm<sup>2</sup> High voltage ESR ~ 50mOhm target <100mOhm SFR > 100Mhz Dual voltage : HV <16V and LV <5V P ~1W Efficiency =90%(LV) / 80% (HV)

Company confidential

#### **High Frequency**

L = 30nH, C = 30nF, **F=200Mhz**, P=1W. Cap density: **220nF/mm**<sup>2</sup> ESR ~ 50mOhm **target <100mOhm** SFR > 100Mhz **Vmax=4V (typ 3.2V)** P ~1W Efficiency =90%





Critical nodes

- □ Capacitors benefits:
  - High resonance frequency
  - Low ESR / ESL
  - Low profile, high reliability and stability (T,V)
- □ Routing benefits:
  - Very compact routing → interposer is 6mm x 7mm
  - Very low inductive traces achievable by leveraging metal levels:
    - 3 top metallization layers (Thick Cu)
    - 1 backside metallization (Thick Cu)
  - Vertical interconnect with TSV

#### **HV interposer:**

- RLC extraction on interconnection nets
- ESR estimated for DC
- Inductances extracted @ 11Mhz
- Optimization on critical nets

| name               | R (mohm)   | L (nH)    |  |
|--------------------|------------|-----------|--|
|                    | calculated | simulated |  |
| vdd_hs-Chs_in      | 48         | 0.8       |  |
| Chs_out-L_in       | 33         | 1         |  |
| vin-C_in           | 20         | 0.6       |  |
| Cin_out-GND        | 26         |           |  |
| vout-Cout_in       | 40         |           |  |
| Cout_out-GND       | 70         | 5.8       |  |
| SW-L_in            | 61.5       | 1.65      |  |
| L_out-current prob | 61         |           |  |
| gnd_io-gnd_pwr     | 18         |           |  |
| gnd_pwr-GND        | 34         |           |  |
| vdd_ls-C_ls_in     | 90         |           |  |
| C_ls_out-GND       | 39         |           |  |
| spare<1>           | 62         |           |  |
| spare<2>           | 74         |           |  |
| spare<3>           | 65.5       |           |  |
| spare<4>           | 58         |           |  |
| spare<5>           | 58         |           |  |
| spare<6>           | 226        |           |  |
| extpwm             | 62         |           |  |
| reset_n            | 99         |           |  |
| spi_clk            | 67         |           |  |
| spi_cs_n           | 71         |           |  |
| spi_mosi           | 61         |           |  |
| spi_miso           | 61         |           |  |
| vdd_3v3            | 74         |           |  |
| vdd_1v5            | 65         |           |  |
| vdd_1v5_io         | 65         |           |  |
| vbg_1v2            | 62         |           |  |
| ibp_test_4u        | 69         |           |  |





## Conclusion and future outlook



## Conclusion

- IPDiA MOSAIC technology is **C scalable**, integrable in **low profile interposer**
- When C scaled
  - SRF is driven by RLC of the most elementary building block
  - Linear dependency with  $C_{global} = N^*C_{local}$  where N is the number of repetitions of the localized element
  - Inverse linear dependency for the ESR and ESL with  $L_{global} = L_{local}/N$  and  $ESR_{global} = ESR_{local}/N$  (electrode resistivity is thus becoming secondary)
  - Demonstrated C scaling technique 
     based upon physical model and measurements
- DC/DC converters: trend towards higher frequency → IPDiA Moasic capacitors are well suited.
- Best trade off between C value, ESR target, ESL target @ interposer level
- **Flexibility** (full-option solutions) can make the difference
  - High Voltage / Low Voltage; Low frequency / High frequency; Isolation requirements → Isolation strategies.
  - Customized Design / Customized Process

## Acknowledgments

The authors would like to thank :

PowerSwipe project partners

Powe



http://www.powerswipe.eu/

- CarrICool project (IPDiA PICS interposer) → E-Poster Session #6
- IPDiA team @ PwrSOC 2014  $\rightarrow$  We have solutions for you







## Thank you for attention !



